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Abstract Multicenter overlap integrals appearing in the
evaluation of multicenter–multielectron integrals of cen-
tral and noncentral interaction potentials are calculated
using complete orthonormal sets of Ya-ETOs (a=1, 0, �1,
�2, ...). The final results are expressed in terms of two-
center overlap integrals between STOs. The convergence
of the series is tested by calculating concrete cases for
arbitrary quantum numbers, screening constants and
location of STOs.
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Introduction

It is well known that the computation of atomic and
molecular multielectron properties requires solutions of
the Schr�dinger equation more accurate than the results
obtained from the Hartree–Fock (HF) equations. The
variational method for improving the HF solutions in
which the interelectronic coordinates are explicitly in-
cluded in the wave functions was first introduced by
Hylleraas. [1, 2] The variational solutions obtained by the
Hylleraas method converge to the exact solution of
Schr�dinger equation with any desired degree of accuracy

if a sufficient number of terms are included. However, it
is difficult to evaluate the multicenter integrals that arise
in Hylleraas theory. The Hylleraas method developed first
by James and Coolidge [3] has been used for determining
the ground state energy of the H2 molecule [4, 5] and still
valid for two-, three- and four-electron atomic and
molecular systems. [6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22]

In [23], we established the general formulae for the
multicenter–multielectron integrals of central and non-
central interaction potentials in terms of multicenter
overlap integrals, which arise in the solution of multi-
electron atomic and molecular problems when a Hylleraas
approximation in Hartree–Fock theory is employed. The
purpose of this paper is to present an evaluation of t-
center overlap integrals:

Sacd:::gb
p1p2p3:::pt�1pt

ðz1z2z3:::zt�1ztÞ

¼ ð
ffiffiffiffiffi

4p
p
Þt�2
Z

c�p1
ðz1;~raÞcp2

ðz2;~rcÞcp3
ðz3;~rdÞ:::cpt�1

�

�ðzt�1;~rgÞcptðzt;~rbÞdv ð1Þ

where t � 2; pi � nilimi and the functions cpi
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normalized Slater-type orbitals (STOs):
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Here Slm are complex Slm � Ylm or real spherical
harmonics determined by the relation

Slmðq; jÞ ¼ Pl mj jðcos qÞFmðjÞ ð4Þ
where Pl mj j are normalized associated Legendre functions
and for complex SH

FmðjÞ ¼
1
ffiffiffiffiffi

2p
p eimj ð5Þ

for real SH
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We note that our definition of phases for complex
spherical harmonics S�lmðq; jÞ ¼ Sl�mðq; jÞ differs from
the Condon–Shortley phases by the sign factor (�1)m.

The multicenter overlap integrals arise in the determi-
nation of various t-electron properties for N-electron
atomic and molecular systems (2�t�N) when a Hyller-
aas-type approximation is employed in Hartree–Fock–
Roothaan theory. These integrals are required in the
calculation of multicenter–multielectron integrals for a t-
electron operator of arbitrary central and noncentral
interaction potentials, [23] the linear combination of
which gives the matrix elements of the same operator
between N-dimensional determinantal wavefunctions of
the N-electron system. [24] With the help of formulae for
the expansion of STOs in terms of STOs at a new origin,
[25] the multicenter overlap integrals, (Eq. 1), are
expressed through the two-center overlap integrals, for
the computation of which efficient computer programs
specially useful for large quantum numbers are available
in our group. [26]

Expansion for products of STOs

In order to evaluate multicenter overlap integrals we shall
require the expansion relation for product of STOs:
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Taking into account Eq. (3) for the radial part of STOs in
Eq. (8), it is easy to establish the following relation:
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where

Nk ¼ n1 þ n2 þ :::þ nk � k þ 1;

zk ¼ z1 þ z2 þ :::þ zk; xi ¼ zi=zk

and the function RNk
ðzk; rÞ is the radial part of normalized

STOs determined by Eq. (3).
In order to derive the expansion relation for Eq. (9) we

utilize the orthonormality relation of spherical harmonics
and the expansion formula: [27]
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Here, the quantities CL Mj jðlm; l0m0Þ are the Gaunt
coefficients. [28] We notice that in recent years several
articles have appeared in which properties of Gaunt
coefficients as well as their efficient and reliable compu-
tation were discussed. [29, 30, 31, 32, 33] The symbol
e � emm0 in Eq. (15) may have the values €1 and is
determined by the product of the signs m and m’ (the sign
of zero regarded as positive). The symbols hm�m0

mm0 may
have the €1 and 0: if among the indices m, m’ and m€m’
there occurs a value equal to zero, then hm�m0

mm0 is also zero;

if all the indices differ from zero, hm�m0
mm0 ¼ �1 and the

sign is determined by the product of the signs of m, m’
and m€m’.

Taking into account Eq. (12) we obtain the following
expansion relation in terms of spherical harmonics:
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Use of translation formulae for STOs

Now we can move on to the evaluation of multicenter
overlap integrals, (Eq. 1). For this purpose, we utilize the
translation formulae for STOs established in [25] with the
help of Ya-ETOs (see Eq. 15 of [25]):
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Taking into account the translation relation (17), it is
easy to express the t-center overlap integrals through the
two-center integrals Saaa:::ab:
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where

~Rik ¼~ri �~rk ði; k ¼ a; b; c and dÞ

qi � minisi; 1 � mi � Ni; 0 � ni � mi � 1

and

�ni � si � ni ð2 � i � t � 1Þ;

mi; ni and si stand for the quantum numbers.

In order to evaluate the two-center integrals Saaa:::ab

that occur in Eq. (22), we take into account Eqs. (7), (10)
and (16) for k=t�1 in Eq. (1). Then, it is easy to express
the integral Saaa:::ab in terms of two-center overlap
integrals:
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As can be seen from Eqs. (22),(18) and (23), the
evaluation of t-center overlap integrals for the N-electron
system (2�t�N) is reduced to the evaluation of two-
center overlap integrals over STOs. Thus, with the aid of
the formulae that have been established in this study, we
can calculate the multicenter–multielectron integrals of
arbitrary central and noncentral potentials by the use of
two-center overlap integrals. (see [23]).

Discussion

Explicit formulae have been presented for computation of
the multicenter overlap integrals that arise in multielec-
tron atomic and molecular calculations which use central
and noncentral interaction potentials. The two-center
overlap integrals can be utilized as a basis in the
calculation of these integrals, therefore, in the solution
of multielectron problem when a Hylleraas approximation
is employed in HFR theory.

Multicenter overlap integrals have not been studied in
the literature so far. For these integrals in this work we
obtained analytical formulae in terms of two-center
overlap integrals. The accuracy of the resulting calcula-
tions of multicenter overlap integrals was tested by the
use of four different methods in which we utilize the
different complete orthonormal sets of Y1, Y0, Y�1 and
Y�1-ETOs.

The results of calculations for three- and four-center
overlap integrals on a Pentium III 800-MHz computer
(using Turbo Pascal) are given in Table 1. The compar-
ative values obtained from Y1, Y0 and Y�1-ETOs and the
CPU time in milliseconds are given in the table. As can be
seen from the table, the accuracy and the CPU time are
satisfactory. We notice that the convergence for a given a,
is more rapid for small R, and it deteriorates as R
increases. An accuracy of 10�5 is obtained for N2=N3=12.
Greater accuracy is easily attainable by the use of more
terms of expansion (22).

It should be noted that the algorithm presented in this
study can be used to calculate any multicenter overlap
integral for the arbitrary values of screening constants,
quantum numbers and location of STOs.
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