Israfil Guseinov - Ramazan Aydın -
Bahtiyar Mamedov

Computation of multicenter overlap integrals with Slater-type orbitals using Ψ^{α}-ETOs

Received: 10 April 2003 / Accepted: 1 July 2003 / Published online: 4 September 2003
© Springer-Verlag 2003

Abstract

Multicenter overlap integrals appearing in the evaluation of multicenter-multielectron integrals of central and noncentral interaction potentials are calculated using complete orthonormal sets of Ψ^{α}-ETOs ($\alpha=1,0,-1$, $-2, \ldots$). The final results are expressed in terms of twocenter overlap integrals between STOs. The convergence of the series is tested by calculating concrete cases for arbitrary quantum numbers, screening constants and location of STOs.

Keywords Slater-type orbitals • Multicenter overlap integrals - Central and noncentral potentials .
Multicenter-multielectron integrals

Introduction

It is well known that the computation of atomic and molecular multielectron properties requires solutions of the Schrödinger equation more accurate than the results obtained from the Hartree-Fock (HF) equations. The variational method for improving the HF solutions in which the interelectronic coordinates are explicitly included in the wave functions was first introduced by Hylleraas. [1, 2] The variational solutions obtained by the Hylleraas method converge to the exact solution of Schrödinger equation with any desired degree of accuracy

[^0]if a sufficient number of terms are included. However, it is difficult to evaluate the multicenter integrals that arise in Hylleraas theory. The Hylleraas method developed first by James and Coolidge [3] has been used for determining the ground state energy of the H_{2} molecule $[4,5]$ and still valid for two-, three- and four-electron atomic and molecular systems. $[6,7,8,9,10,11,12,13,14,15$, $16,17,18,19,20,21,22]$

In [23], we established the general formulae for the multicenter-multielectron integrals of central and noncentral interaction potentials in terms of multicenter overlap integrals, which arise in the solution of multielectron atomic and molecular problems when a Hylleraas approximation in Hartree-Fock theory is employed. The purpose of this paper is to present an evaluation of t center overlap integrals:

$$
\begin{align*}
& S_{p_{1} p_{2} p_{3} \ldots p_{t-1} p_{t}}^{a c d \ldots g b}\left(\zeta_{1} \zeta_{2} \zeta_{3} \ldots \zeta_{t-1} \zeta_{t}\right) \\
& =(\sqrt{4 \pi})^{t-2} \int \chi_{p_{1}}^{*}\left(\zeta_{1}, \vec{r}_{a}\right) \chi_{p_{2}}\left(\zeta_{2}, \vec{r}_{c}\right) \chi_{p_{3}}\left(\zeta_{3}, \vec{r}_{d}\right) \ldots \chi_{p_{t-1}} \\
& \quad \cdot\left(\zeta_{t-1}, \vec{r}_{g}\right) \chi_{p_{t}}\left(\zeta_{t}, \vec{r}_{b}\right) d v \tag{1}
\end{align*}
$$

where $t \geq 2, p_{i} \equiv n_{i} l_{i} m_{i}$ and the functions $\chi_{p_{i}}$ are the normalized Slater-type orbitals (STOs):
$\chi_{n l m}(\zeta, \vec{r})=R_{n}(\zeta, r) S_{l m}(\theta, \varphi)$
$R_{n}(\zeta, r)=(2 \zeta)^{n+\frac{1}{2}}[(2 n)!]^{-\frac{1}{2}} r^{n-1} e^{-\zeta r}$
Here $S_{l m}$ are complex $S_{l m} \equiv Y_{l m}$ or real spherical harmonics determined by the relation
$S_{l m}(\theta, \varphi)=P_{l|m|}(\cos \theta) \Phi_{m}(\varphi)$
where $P_{l|m|}$ are normalized associated Legendre functions and for complex SH
$\Phi_{m}(\varphi)=\frac{1}{\sqrt{2 \pi}} e^{i m \varphi}$
for real SH
$\Phi_{m}(\varphi)=\frac{1}{\sqrt{\pi\left(1+\delta_{m 0}\right)}}\left\{\begin{array}{lll}\cos |m| \varphi & \text { for } & m \geqslant 0 \\ \sin |m| \varphi & \text { for } & m<0 .\end{array}\right.$
We note that our definition of phases for complex spherical harmonics $S_{l m}^{*}(\theta, \varphi)=S_{l-m}(\theta, \varphi)$ differs from the Condon-Shortley phases by the sign factor $(-1)^{m}$.

The multicenter overlap integrals arise in the determination of various t-electron properties for N-electron atomic and molecular systems $(2 \leq t \leq N)$ when a Hyller-aas-type approximation is employed in Hartree-FockRoothaan theory. These integrals are required in the calculation of multicenter-multielectron integrals for a t electron operator of arbitrary central and noncentral interaction potentials, [23] the linear combination of which gives the matrix elements of the same operator between N -dimensional determinantal wavefunctions of the N-electron system. [24] With the help of formulae for the expansion of STOs in terms of STOs at a new origin, [25] the multicenter overlap integrals, (Eq. 1), are expressed through the two-center overlap integrals, for the computation of which efficient computer programs specially useful for large quantum numbers are available in our group. [26]
$A_{m m^{\prime}}^{M}=\left\{\begin{array}{l}\left.\frac{1}{\sqrt{2}}\left(2-\left|\eta_{m m^{\prime}}^{m-m^{\prime}}\right|\right)^{1 / 2} \delta_{M, \varepsilon\left|m-m^{\prime}\right|}+\frac{1}{\sqrt{2}} \eta_{m m^{\prime}}^{m+m^{\prime}} \delta_{M, \varepsilon \mid m+m^{\prime}} \right\rvert\, \quad \text { for real STOs } \\ \delta_{M, m-m^{\prime}} \quad \text { for complex STOs. }\end{array}\right.$

$$
\begin{align*}
& C^{L|M|}\left(l m, l^{\prime} m^{\prime}\right) \\
& \quad=\left\{\begin{array}{lll}
C^{L}\left(l m, l^{\prime} m^{\prime}\right) & \text { for } & |M|=\left|m-m^{\prime}\right| \\
C^{L}\left(l m, l^{\prime}-m^{\prime}\right) & \text { for } & |M|=\left|m+m^{\prime}\right|
\end{array}\right. \tag{14}
\end{align*}
$$

Expansion for products of STOs

In order to evaluate multicenter overlap integrals we shall require the expansion relation for product of STOs:

$$
\begin{align*}
& \chi_{n_{1} l_{1} m_{1}}^{*}\left(\zeta_{1}, \vec{r}\right) \chi_{n_{2} l_{2} m_{2}}\left(\zeta_{2}, \vec{r}\right) \ldots \chi_{n_{k} l_{k} m_{k}}\left(\zeta_{k}, \vec{r}\right) \\
& \quad=R_{n_{1} n_{2} \ldots n_{k}}\left(\zeta_{1} \zeta_{2} \ldots \zeta_{k}, r\right) \Theta_{l_{1} m_{1}, l_{2} m_{2} \ldots, l_{k} m_{k}}(\theta, \varphi) \tag{7}
\end{align*}
$$

where
$R_{n_{1} n_{2} \ldots n_{k}}\left(\zeta_{1} \zeta_{2} \ldots \zeta_{k}, r\right)=R_{n_{1}}\left(\zeta_{1}, r\right) R_{n_{2}}\left(\zeta_{2}, r\right) \ldots R_{n_{k}}\left(\zeta_{k}, r\right)$
$\Theta_{l_{1} m_{1}, l_{2} m_{2}, \ldots, l_{k} m_{k}}(\theta, \varphi)=S_{l_{1} m_{1}}^{*}(\theta, \varphi) S_{l_{2} m_{2}}(\theta, \varphi) \ldots S_{l_{k} m_{k}}(\theta, \varphi)$

Taking into account Eq. (3) for the radial part of STOs in Eq. (8), it is easy to establish the following relation:

$$
\begin{align*}
& R_{n_{1} n_{2} \ldots n_{k}}\left(\zeta_{1} \zeta_{2} \ldots \zeta_{k}, r\right)=R_{n_{1} n_{2} \ldots n_{k}}\left(\zeta_{1} \zeta_{2} \ldots \zeta_{k}\right) R_{N_{k}}\left(z_{k}, r\right) \tag{10}\\
& R_{n_{1} n_{2} n_{3} \ldots n_{k}}\left(\zeta_{1} \zeta_{2} \ldots \zeta_{k}\right)=\left[\frac{\left(2 N_{k}\right)!}{\left(2 n_{1}\right)!\left(2 n_{2}\right)!\ldots\left(2 n_{k}\right)!}\right]^{1 / 2} \cdot \\
& \quad \cdot\left(\sqrt{2 z_{k}}\right)^{3(k-1)} x_{1}^{n_{1}+1 / 2} x_{2}^{n_{2}+1 / 2} \ldots x_{k}^{n_{k}+1 / 2} \tag{11}
\end{align*}
$$

$$
\begin{align*}
N_{k} & =n_{1}+n_{2}+\ldots+n_{k}-k+1 \\
z_{k} & =\zeta_{1}+\zeta_{2}+\ldots+\zeta_{k}, x_{i}=\zeta_{i} / z_{k} \tag{6}
\end{align*}
$$

and the function $R_{N_{k}}\left(z_{k}, r\right)$ is the radial part of normalized STOs determined by Eq. (3).

In order to derive the expansion relation for Eq. (9) we utilize the orthonormality relation of spherical harmonics and the expansion formula: [27]

$$
\begin{align*}
& S_{l m}^{*}(\theta, \varphi) S_{l^{\prime} m^{\prime}}(\theta, \varphi) \\
& \quad=\frac{1}{\sqrt{4 \pi}} \sum_{L=\left|l-l^{\prime}\right|}^{l+l^{\prime}} \sum_{M=-L}^{L} d^{L|M|}\left(l m, l^{\prime} m^{\prime}\right) S_{L M}^{*}(\theta, \varphi) \tag{12}\\
& d^{L M}\left(l m, l^{\prime} m^{\prime}\right)=(2 L+1)^{1 / 2} C^{L|M|}\left(l m, l^{\prime} m^{\prime}\right) A_{m m^{\prime}}^{M} \tag{13}
\end{align*}
$$

where

Use of translation formulae for STOs

Now we can move on to the evaluation of multicenter overlap integrals, (Eq. 1). For this purpose, we utilize the translation formulae for STOs established in [25] with the help of Ψ^{α}-ETOs (see Eq. 15 of [25]):

$$
\begin{align*}
& \chi_{n l m}\left(\zeta, \vec{r}_{a 1}\right) \\
& \quad=\lim _{N \rightarrow \infty} \sum_{n^{\prime}=1}^{N} \sum_{l^{\prime}=0}^{n^{\prime}-1} \sum_{m^{\prime}=-l^{\prime}}^{l^{\prime}} V_{n l m, n^{\prime} l^{\prime} m^{\prime}}^{\alpha N *}\left(\zeta, \zeta ; \vec{R}_{a b}\right) \chi_{n^{\prime} l^{\prime} m^{\prime}}\left(\zeta, \vec{r}_{b 1}\right) \tag{17}
\end{align*}
$$

where $\alpha=1,0,-1,-2, \ldots$ and

$$
\begin{align*}
& V_{n l m, n^{\prime} l^{\prime} m^{\prime}}^{\alpha N}\left(\zeta, \zeta^{\prime} ; \vec{R}_{a b}\right) \\
& =\sum_{n^{\prime \prime}=l^{\prime}+1}^{N} \Omega_{n^{\prime} n^{\prime \prime}}^{\alpha l^{\prime}}(N) S_{n l m, n^{\prime \prime}-\alpha l^{\prime} m^{\prime}}\left(\zeta, \zeta^{\prime} ; \vec{R}_{a b}\right) \\
& \Omega_{n k}^{\alpha l}(N)=\left[\frac{[2(k-\alpha)]!}{(2 k)!}\right]^{\frac{1}{2}} \sum_{n^{\prime}=\max (n, k)}^{N}\left(2 n^{\prime}\right)^{\alpha} \omega_{n^{\prime} n}^{\alpha l} \omega_{n^{\prime} k}^{\alpha l} \\
& \omega_{n n^{\prime}}^{\alpha^{\prime}}=(-1)^{n^{\prime}-l-1}\left[\frac{\left(n^{\prime}+l+1\right)!}{(2 n)^{\alpha}\left(n^{\prime}+l+1-\alpha\right)!} F_{n^{\prime}+l+1-\alpha} .\right. \\
& \left.\quad \cdot(n+l+1-\alpha) F_{n^{\prime}-l-1}(n-l-1) F_{n^{\prime}-l-1}\left(2 n^{\prime}\right)\right]^{1 / 2} \tag{20}
\end{align*}
$$

Here $\quad F_{k}(n)=n!/[k!(n-k)!] \quad$ and the quantities $S_{n l m, n^{\prime} l^{\prime} m^{\prime}}\left(\zeta, \zeta^{\prime} ; \vec{R}_{a b}\right) \equiv S_{n l m, n^{\prime} l^{\prime} m^{\prime}}^{a b}\left(\zeta, \zeta^{\prime}\right)$ are the two-center overlap integrals of STOs defined by
$S_{n l m, n^{\prime} l^{\prime} m^{\prime}}\left(\zeta, \zeta^{\prime} ; \vec{R}_{a b}\right)=\int \chi_{n l m}^{*}\left(\zeta, \vec{r}_{a}\right) \chi_{n^{\prime} l^{\prime} m^{\prime}}\left(\zeta^{\prime}, \vec{r}_{b}\right) d v$
Taking into account the translation relation (17), it is easy to express the t-center overlap integrals through the two-center integrals $S^{a a a \ldots a b}$:

$$
\begin{align*}
& S_{p_{1} p_{2} p_{3} \ldots p_{t-1} p_{t}}^{a c d \ldots g b}\left(\zeta_{1} \zeta_{2} \zeta_{3} \ldots \zeta_{t-1} \zeta_{t}\right) \\
& =\sum_{N_{2} N_{3} \ldots N_{t-1} \rightarrow \infty} \lim _{q_{2} q_{3} \ldots q_{t-1}} V_{p_{2} q_{2}}^{\alpha N_{2}^{*}}\left(\zeta_{2}, \zeta_{2} ; \vec{R}_{c a}\right) \\
& \quad \cdot V_{p_{3} q_{3}}^{\alpha N_{3}^{*}}\left(\zeta_{3}, \zeta_{3} ; \vec{R}_{d a}\right) \times \ldots V_{p_{t-1} q_{t-1}}^{\alpha N_{t-1}^{*}}\left(\zeta_{t-1}, \zeta_{t-1} ; \vec{R}_{g a}\right) . \\
& \quad \cdot S_{p_{1} q_{2} q_{3} \ldots q_{t-1} p_{t}}^{a a \ldots a b}\left(\zeta_{1} \zeta_{2} \zeta_{3} \ldots \zeta_{t-1} \zeta_{t}\right) \tag{22}
\end{align*}
$$

where
$\vec{R}_{i k}=\vec{r}_{i}-\vec{r}_{k}(i, k=a, b, c$ and $d)$
$q_{i} \equiv \mu_{i} v_{i} \sigma_{i}, 1 \leq \mu_{i} \leq N_{i}, 0 \leq v_{i} \leq \mu_{i}-1$
and
$-v_{i} \leq \sigma_{i} \leq v_{i}(2 \leq i \leq t-1) ;$
μ_{i}, v_{i} and σ_{i} stand for the quantum numbers.

In order to evaluate the two-center integrals $S^{a a a \ldots a b}$ that occur in Eq. (22), we take into account Eqs. (7), (10) and (16) for $k=t-1$ in Eq. (1). Then, it is easy to express the integral $S^{a a a \ldots a b}$ in terms of two-center overlap integrals:

$$
\begin{align*}
& S_{p_{1} q_{2} q_{3} \ldots q_{t-1} q_{t}}^{a a a \ldots a b}\left(\zeta_{1} \zeta_{2} \zeta_{3} \ldots \zeta_{t-1} \zeta_{t}\right) \\
& =R_{n_{1} \mu_{2} \mu_{3} \ldots \mu_{t-1}}\left(\zeta_{1} \zeta_{2} \zeta_{3} \ldots \zeta_{t-1)} \sum_{L_{2} M_{2}, L_{3} M_{3}, \ldots, L_{t-1} M_{t-1}}\right. \\
& \quad \cdot d^{L_{2} M_{2}}\left(l_{1} m_{1}, v_{2} \sigma_{2}\right) d^{L_{3} M_{3}}\left(L_{2} M_{2}, v_{3} \sigma_{3}\right) \\
& \quad \times \ldots d^{L_{t-1} M_{t-1}\left(L_{t-2} M_{t-2}, v_{t-1} \sigma_{t-1}\right)} \\
& \quad \cdot S_{N_{t-1} L_{t-1} M_{t-1}, n_{t} l_{t} m_{t}}\left(z_{t-1}, \zeta_{t} ; \vec{R}_{a b}\right) \tag{23}
\end{align*}
$$

As can be seen from Eqs. (22),(18) and (23), the evaluation of t-center overlap integrals for the N-electron system $(2 \leq t \leq N)$ is reduced to the evaluation of twocenter overlap integrals over STOs. Thus, with the aid of the formulae that have been established in this study, we can calculate the multicenter-multielectron integrals of arbitrary central and noncentral potentials by the use of two-center overlap integrals. (see [23]).

Discussion

Explicit formulae have been presented for computation of the multicenter overlap integrals that arise in multielectron atomic and molecular calculations which use central and noncentral interaction potentials. The two-center overlap integrals can be utilized as a basis in the calculation of these integrals, therefore, in the solution of multielectron problem when a Hylleraas approximation is employed in HFR theory.

Multicenter overlap integrals have not been studied in the literature so far. For these integrals in this work we obtained analytical formulae in terms of two-center overlap integrals. The accuracy of the resulting calculations of multicenter overlap integrals was tested by the use of four different methods in which we utilize the different complete orthonormal sets of $\Psi^{1}, \Psi^{0}, \Psi^{-1}$ and Ψ^{-1}-ETOs.

The results of calculations for three- and four-center overlap integrals on a Pentium III $800-\mathrm{MHz}$ computer (using Turbo Pascal) are given in Table 1. The comparative values obtained from Ψ^{1}, Ψ^{0} and Ψ^{-1}-ETOs and the CPU time in milliseconds are given in the table. As can be seen from the table, the accuracy and the CPU time are satisfactory. We notice that the convergence for a given α, is more rapid for small R, and it deteriorates as R increases. An accuracy of 10^{-5} is obtained for $N_{2}=N_{3}=12$. Greater accuracy is easily attainable by the use of more terms of expansion (22).

It should be noted that the algorithm presented in this study can be used to calculate any multicenter overlap integral for the arbitrary values of screening constants, quantum numbers and location of STOs.
Table 1 Comparison of methods of computing three- and four-center overlap Integrals $S^{\text {acb }}$ and $S^{\text {acdb }}$ (in a.u.); $N_{2}=N_{3}=12, \theta_{\mathrm{ca}}=\theta_{\mathrm{ba}}=120^{\circ}, \varphi_{\mathrm{ca}}=\varphi_{\mathrm{ba}}=180^{\circ}, \theta_{\mathrm{db}}=60^{\circ}, \varphi_{\mathrm{db}}=135^{\circ}$

References

1. Hylleraas EA (1928) Z Phys 48:469-494
2. (a) Hylleraas EA (1929) Z Phys 54:347-366; (b) Hylleraas EA (1930) Z Phys 60:624-636; (c) Hylleraas EA (1930) Z Phys 65:209-225
3. James HM, Coolidge AS (1933) J Chem Phys 1:825-835
4. (a) Kolos W, Roothaan CCJ (1960) Rev Mod Phys 32:205-210;
(b) Kolos W, Roothaan CCJ (1960) Rev Mod Phys 32:2192232
5. (a) Kolos W, Wolniewicz L (1964) J Chem Phys 41:36633673; (b) Kolos W, Wolniewicz L (1968) J Chem Phys 49:404410
6. Öhrn Y, Nording J (1963) J Chem Phys 39:1864-1871
7. Szasz L (1961) J Chem Phys 35:1072-1078
8. Perkins JF (1968) J Chem Phys 48:1985-1988
9. Ho YK, Pake BAP (1975) J Comput Phys 17:122-129
10. Berk A, Bhatia AK, Junker BR, Temkin A (1986) Phys Rev A 34:4591-4598
11. Fromm DM, Hill RN (1987) Phys Rev A 36:1013-1019
12. Remiddi E (1991) Phys Rev A 44:5492-4503
13. Larson S (1968) Phys Rev 169:49-57
14. Perkins JF (1976) Phys Rev A 13:915-921
15. King FW (1986) Phys Rev A 34:4543-4548
16. King FW, Dressel PR (1989) J Chem Phys 90:6449-6457
17. King FW (1991) Phys Rev A 44:7108-117
18. King FW, Dykema KJ, Lund A (1992) Phys Rev A 46:54065417
19. Luchow A, Kleindienst H (1993) Int J Quantum Chem 45:445470
20. King FW (1993) J Chem Phys 99:3622-3628
21. Porras I, King FW (1994) Phys Rev A 49:1637-1645
22. Kleindienst H, Luchow A (1995) Phys Rev A 51:5019-5028
23. Guseinov II (2003) J Mol Model 9:190-194, DOI 10.1007/ s00894-003-0134-0
24. Guseinov II (1998) J Mol Struct (Theochem) 422:75-78
25. Guseinov II (2002) Int J Quantum Chem 90:114-118
26. Guseinov II, Mamedov BA (2002) J Mol Mod 8:272-276
27. Guseinov II (1970) J Phys B 3:1399-1412
28. Gaunt JA (1929) Philos Trans R Soc London, Ser A 228:151196
29. Homeier HHH, Steinborn EO (1996) J Mol Struct (Theochem) 368:31-37
30. Sebilleau D (1998) J Phys A 31:7157-7168
31. Weniger EJ, Steinborn EO (1982) Comput Phys Commun 25:149-157
32. Xu Y-L (1996) Math Comput 65:1601-1612
33. Xu Y-L (1997) J Comput Appl Math 85:53-56

[^0]: I. Guseinov $(\square) \cdot$ R. Aydın

 Department of Physics, Faculty of Arts and Sciences,
 Onsekiz Mart University,
 Çanakkale, Turkey
 e-mail: iguseinov@cheerful.com and israfilguseinov@yahoo.com
 Fax: +90 3562521585
 B. Mamedov

 Department of Physics, Faculty of Arts and Sciences, Gaziosmanpaşa University,
 Tokat, Turkey
 B. Mamedov

 Faculty of Physics,
 Baku State University,
 Baku, Azerbaijan

